

ENHANCING GNU RADIO FOR RUN-TIME ASSEMBLY

OF FPGA-BASED ACCELERATORS

Richard Stroop and Peter Athanas
Virginia Tech, Blacksburg, Virginia, United States; {blvninri,athanas}@vt.edu

ABSTRACT

An enhanced GNU Radio flow is presented that seamlessly
augments the standard GNU Radio framework with modules
that reside in FPGAs, yet preserves the GNU Radio
dynamics by providing full-custom radio hardware/software
structures in seconds. By delegating portions of a GNU
Radio flow graph to networked FPGAs, a larger class of
software-defined radios can be implemented. Assembly of
the signal processing structures within the FPGAs is
accomplished using an enhanced flow where modules are
customized, placed, and routed in a fraction of the time
required by the vendor tools. With rapid FPGA assembly, a
GNU Radio designer retains the ability to perform “what-if”
experiments, which in turn greatly enhances productivity.

1. INTRODUCTION

Software defined radios (SDRs) have changed the paradigm
of slowly designing custom radios, instead allowing
designers to quickly iterate designs with a large range of
functionality. With the help of environments like the open-
source project, GNU Radio, a designer can prototype radios
with greatly improved productivity. The inherent
reconfigurability of CPUs makes them useful tools for
realizing rapid development of radios, but their inability to
process large amounts of data at once has always limited
their use for high-throughput signal processing [1]. Even the
most sophisticated processor can only achieve limited data
rates and it becomes difficult to meet latency requirements
as more processes are added.
 Due to the software performance limitations in the
GNU Radio framework, only radios with a certain level of
complexity can be realized. For SDRs to become more
prevalent in radio prototyping and development,
accelerators are needed to address the high-throughput and
computationally intensive portions of the radio. FPGAs are
nicely suited for this needed acceleration; however, they do
have properties that make them undesirable for rapid SDR
development. Due to their long compile times, adding
FPGAs into a flow designed for only software brings
prototyping to a crawl. Furthermore, special hardware
design skills are typically needed, and hardware design

languages -- far removed from radio design environments --
are used for building the accelerator structures.
 In this paper, enhancements to the GNU Radio
development environment are presented that provide an easy
way for adding hardware acceleration to a software radio.
GNU Radio operates by piecing together software modules,
either graphically or via a Python script, calling different
functions on data that stream through a flow graph. In the
enhanced flow, one or more modules in a design graph can
be designated to reside in one or more FPGAs. The concept
of module-based assembly is preserved in the enhanced
flow, where hardware-centric modules are pre-compiled
relocatable objects that are placed in a library, and can be
retrieved, placed, and routed with other modules in a
designated device when called upon by the GNU Radio run-
time engine. Unlike other approaches, the FPGA
compilation flow has been altered in favor of rapid assembly
(place and route) at run time. The communication interfaces
are pre-implemented for the FPGA so that radio hardware
designers do not have to develop their own system. The data
are abstracted to types that GNU Radio software blocks use
and presented in a standard way to the designer, regardless
of the interface used to receive the data. In this way only the
basic signal processing blocks need to be designed in order
to see them work within the framework of GNU Radio. The
signal processing blocks that are used often can be added to
a community-based library for easy reuse. The slow compile
times are overcome with a modified back-end FPGA
assembly suite. The project is titled GReasy, GNU Radio
easy, since implementing signal processing with an FPGA
accelerator is as easy and fast as creating a normal flow
graph in GNU Radio. To the radio designer, the complexity
of the underlying hardware is abstracted away, making it
appear as if everything compiles and runs in software,
allowing many iterations to be realized quickly. Radio
design can continue at the speeds that GNU Radio designers
are accustomed to but with the range of possible waveforms
and general functionality extended.

1.1. Organization

This paper is organized as follows; Chapter 2 discusses the
background to this work, with a focus on the hardware
involved. Related works are mentioned to show the

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

87

necessity of these improvements. Chapter 3 explains the
enhancements made to GNU Radio to add FPGA
accelerators without some of the drawbacks of normal
hardware additions. Chapter 4 describes how the hardware
is built with a focus on quick designs rather than an optimal
placement. Chapter 5 presents a demonstration of the basic
functionality of this new model. Chapter 6 concludes the
paper.

2. BACKGROUND

Despite being called software-defined radios, a real radio
can never be completely built with only a processor. There
must be an antenna and front-end capable of
receiving/transmitting a signal and possibly doing data
reduction and front-end filtering to transform that signal into
a format usable by a software processor. A common way to
handle this processing requirement is by adding a small
amount of appropriate hardware back into the flow.

2.1. GNU Radio

GNU Radio is an extensive framework that enables many
complex designs to be prototyped and built with only a
General Purpose Processor (GPP) and off-the-shelf radio
hardware. It is open source and commonly used due to its
wide range of available radio blocks [2] and has a simple
user interface. GNU Radio builds SDRs as flow graphs that
can either be expressed in a Python script or graphically
wired together with a tool called GNU Radio Companion
(GRC) [3]. All of the signal processing is done in C++, a
common language for software development, so that adding
another custom block to GNU Radio is simple [4].
 Each block runs a signal-processing task in a dedicated
thread that passes data to other threads through shared
memory buffers. The GNU Radio scheduler handles the
threads and data with little overhead, but requires the blocks
to be written in their format and only for GPPs. Currently
the only supported off-loading of the signal in the flow
graph is for transmission and reception of analog signals
with a radio front-end. No other processing hardware can be
added easily but GNU Radio does allow for rapid software-
only prototypes.
 One common hardware device for SDRs is a Universal
Software Radio Peripheral (USRP). There are different
iterations designed by Ettus Research [5] based on what a
user needs. All of them are relatively inexpensive, as far as
hardware goes, so they are common in research and among
SDR hobbyists. With the use of replaceable daughter cards
the hardware can be quickly changed to handle different
frequencies for transmitting and receiving. They are well
supported in the popular GNU Radio community and can be
connected either by USB or Gigabit Ethernet for more
bandwidth. When used as receivers, the USRPs convert

analog signals to digital signals and decimate them to
appropriate sample rates before passing the signal to a host
computer for additional signal processing. When used as
transmitters, the USRPs perform the inverse of the functions
described for reception.
 The USRP is an example of a required hardware
accelerator to provide an RF front-end. It contains a
motherboard, multiple ADCs and DACs, and a million gate
FPGA [6]. High-speed general-purpose operations are done
on the embedded FPGA such as decimation, interpolation,
and digital conversions [7]. By moving some processing to
hardware, GNU Radio has already enabled many real-time
radio prototypes [8].

2.2. FPGAs

Although there are many powerful options in the field of
signal processing, FPGAs provide a reconfigurable means
of handling intensive processing tasks. FPGAs consist of a
large set of hierarchically connected logic blocks that are re-
programmable to any implementation that can be created
with a hardware description language. Where GPPs do
everything in sequence, FPGAs can implement large
parallel operations and deep computational pipelines, which
make them indispensable in the SDR domain [9].
 A typical FPGA compilation flow involves
transforming a hardware description into a binary image, or
bitstream, that is used to program a device. This is a
multistage process that has many variations, but all of which
take a large amount of time. The Tools for Open-source
Reconfigurable Computing (TORC) are useful for user
manipulation of EDIF and XDL files as well as bitstream
packets [10]. TORC provides a powerful API for exploring
alternative ways of processing FPGA designs. By itself, it is
not a method of FPGA assembly, yet with intricate
knowledge of the Xilinx flow, custom tools can be created
with different objectives in mind. The Virginia Tech
qFlow/tFlow project uses TORC as a foundation to create
an enhanced Xilinx back-end bitstream generation process
with the primary objective of rapid compilation [11].

2.3. Related Work

GNU Radio has seen many iterations and enhancements
throughout its development. Due to the large community,
there are constantly software-processing blocks that are
being produced and new methods of implementing radios
faster are being shared. Developments more concerned with
this paper are those that have attempted to add hardware to a
largely software based design environment.
 Many projects have been developed to make use of
FPGAs for software-defined radio acceleration. These
projects include the Kansas University Agile Radio [12], the
Japanese National Institute of Information and

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

88

Communications Technology SDR Platform [13], and the
Berkeley Cognitive Radio Platform [14] to name a few.
These implementations all required using special boards and
software for communication rather than augmenting already
available systems. They were also limited by the slow
compile times of FPGAs, although their gains in
performance were seen as worth this cost.
 FPGAs have not been added to stock GNU Radio yet as
“hardware is strictly not part of GNU Radio” [2]. There is
an FPGA on the USRP devices that can be modified [15] for
custom applications though. With the recent increase in
FPGA size on the newer devices these customizations have
become more popular. Unfortunately the changes made are
permanently left on the board and run before every flow
graph receiving data from the USRP. All flexibility is lost
and their operation is not presented to the user in the flow
graph.

3. GNU RADIO ENHANCEMENTS

Changes were made to the GNU Radio software distribution
and additional capabilities were integrated into it to
facilitate the building of attached hardware. The normal
GNU Radio functionality is maintained, yet slight changes
to the system have been made to accommodate distributed
hardware and more flexible communications, and are
outlined in this section.

3.1. GNU Radio FPGA Extension Class

The GNU Radio module library is organized into a set of
well-defined classes. There are separate classes for filters,
operators, input/output, converters, and more. The entire
structure is set up to allow easy addition of new processing
blocks simply by adding another class. The classes inherit
all of the necessary block information from GNU Radio and
thus never create new dependencies within the rest of the
system. This same model was used to develop a hardware
class that would fit alongside all of the other blocks.
 Prior work was done to develop an auxiliary FPGA
(afpga) class for GNU Radio [16]. This class contained an
afpga_source and afpga_sink that mimicked the behavior of
a USRP2 source and sink using raw Ethernet frames. The
only difference was that an afpga_sink sent a packet to a
connected USRP2 that redirected the stream of data to the
FPGA. This paradigm was changed because it did not allow
for the user to have control over how hardware was added to
the FPGA. The benefits of the new flow can be seen in
Figure 1. The legacy blocks evolved into the new afpga_in
and afpga_out blocks of the current system. Instead of
presenting data as disappearing into a sink, the afpga_in
block presents data as entering an FPGA. The new block
enables GNU Radio data from the computer to be sent to the
FPGA as well as from the USRP2, and even from other
FPGAs. The afpga_out block represents the output of a

Figure 1. Previous vs. Current afpga Model

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

89

controllable system rather than an unknown source. The
standard GNU Radio complex I/Q data format is included as
an output type so that further processing can occur on the
host if desired. In this way hardware and software blocks
can go into the same flow graph and communicate with one
another. The only limitation is that hardware blocks can
only be placed within afpga_in and afpga_out blocks, and
regular GNU Radio blocks must be placed outside of them.
If the functionality of a software block is desired on the
hardware, currently it must be written in HDL and added to
the afpga library.
 The real shift in how hardware is represented in GNU
Radio comes with the addition of signal processing afpga
blocks. As with the GNU Radio paradigm, arbitrary signal
processing chains are composed by connecting various
afpga blocks. By preserving this assembly paradigm, the
designer is free to build hardware, and have it interact with
other hardware or software. Since multiple paths are
supported, modules can communicate to one or more other
blocks that may be connected to it. This scheme lends itself
to improved prototyping because it now has hardware
blocks that are free to operate the same way GNU Radio
already treats software blocks. Presenting the hardware to
radio designers in a familiar and flexible fashion is only the
first step to enhancing this SDR environment.
 With GRC, a completely visual representation of the
software and hardware can be built. By enabling a visual
component, prototypes can be presented for the designers in
a clearer way. All of the current afpga blocks have GRC
representations allowing them to be managed visually.
There are also scripts in place to automatically add newly
registered afpga blocks to the GRC repository for dragging
and dropping into designs. It should be noted that if a
designer does not want to use GRC, they could continue
using the GNU Radio Python scripts without losing any
functionality of this work.

3.2. Core Code Changes

The changes to afpga_in and afpga_out for GRC are purely
visual. These modules are still sources and sinks within the
core of GNU Radio. Since the FPGA processing blocks are
not executed on the host machine, the data stream does not
necessarily need to be handled by the host computer. In
order to make this work, the GNU Radio scheduler is
ignored for these blocks. When two blocks are connected
from a GNU Radio script, the function gr_flowgraph::
connect(source, destination) is run. This does a
check to make sure the modules have the same type and are
not already connected. Once this is done the modules are
added to the scheduler to be run later. Since no software
data is being sent through the hardware blocks, they are not
scheduled. The process for ignoring the FPGA blocks is
currently rudimentary: if both the source and the sink

contain afpga in the name, then they are not scheduled. Also
if a USRP2 block is connected to an afpga block, neither are
scheduled. The USRP2 was modified to send directly to an
FPGA, which clears an overload of traffic to the host
machine. This means that the block on the host is no longer
doing any processing, which is why it too is no longer
scheduled. If an FPGA block connects to another FPGA
block, since GNU Radio is no longer recognizing this
connection, it is logged in ‘fpga_connections.txt’. These
connections will be used to build a netlist and eventually a
bitstream for every FPGA in the flow graph.
 GNU Radio does not run the unscheduled hardware
blocks, but it does call their constructor functions. Each
block’s constructor opens a file called ‘edif.dat’ and
appends one line of information to it (Figure 2). This line is
a condensed description of the ports available to the Verilog
module (Figure 3). The file is used by the program
EdifWriter to build a completely Xilinx compatible EDIF
file. EdifWriter is part of the qFlow package that will be
presented soon [11]. The information that is written by each
block contains a unique name for that block as well as all of
the port information. The ports that are buses are described
as ARRAYS with a certain DIRECTION, NAME, and
SIZE. The ports that are only one bit are described as
PORTS with just a DIRECTION and NAME. This means
that most data lines are described as ARRAYS and the
clock/reset lines are usually PORTS.

Figure 2. Sample Module edif.dat Line

Figure 3. Verilog of Sample Module

 Within the framework of GNU Radio, all of the blocks
are created, connected, and then run. The creation process
yields an ‘edif.dat’ file, and the module connections are
recorded in the file ‘fpga_connections.txt’. After all of this
is done, the flow graph is started. This normally calls the
start() function on all of the blocks that have been
scheduled, but code was inserted just before this step to
assemble and program the necessary FPGAs first. The code

Cell;zb_radio;ZB3;Array;output;out;33;Array;
 input;in;33;Port;input;rst;Port;input;clk;

module zb_radio (
output reg [32:0] out,
input [32:0] in,
input rst,
input clk

);

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

90

was placed into a separate C++ file called
‘edif_connector.h’ so that modifications could be made
without disrupting more of the GNU Radio core.
 The connect_edif() function starts by cleaning up
‘fpga_connections.txt’. This means clearing duplicates and
moving valid information to a file called ‘connections.txt’.
Since ‘fpga_connections.txt’ is appended to, it has to be
deleted after each run or the next run will contain all of the
information from both runs. Using this connection
information, the function builds a netlist for each FPGA.
The different FPGAs are identified by different base MAC
addresses associated with the afpga_in and afpga_out
blocks.
 After all of the block's CELL information is added to
the file, the connection information is added. The
connections are denoted as either NET or LOOP. A NET is
a one-bit connection that declares a NAME for itself and
then points to the bits that it is connecting. The bits are
identified by pointing to a CELL with a certain INSTANCE
and then to the desired PORT. If the single bit being
connected is part of an ARRAY of wires, then the INDEX is
also given. Otherwise a negative one INDEX tells the code
that the PORT is only one bit wide and should be treated as
such. If more than one bit should be connected, a LOOP is
used instead. A LOOP also starts by declaring a NAME but
includes a SIZE to make sure that everything connecting to
it has the same width. After that, all of the wires are
identified by pointing to a CELL with a certain INSTANCE
and then to the desired ARRAY.
 Every CELL is automatically given a NET that
connects the clock and a NET that connects the reset to a
global clock and global reset respectively. If a NET or
LOOP has the same name as another NET or LOOP on a
different line, they will be automatically concatenated by
EdifWriter. This allows for multiple lines containing the
same clock and reset information, but can be used to
connect a complicated wire set in the future. A complete
‘edif.dat’ file showing the modules and connections used for
the implementation of this paper is shown in Figure 4.
 It is necessary to know that these `edif.dat' files contain
all of the same information as a Xilinx EDIF file but are
presented in an easily readable, manipulatable, and compact
format. EdifWriter parses this information and uses
TORC to build the more complex netlist. Although these
files are automatically generated and run, they can be
modified or written from scratch by any user who wishes to
describe a netlist in a simpler format before running the
Xilinx or qFlow tools, which require an EDIF.

3.3. Fast Bitstream Creation

Once a connections list is built, one or more bitstreams must
be generated in order to actually program any of the FPGAs.
The remainder of the code mostly calls external scripts to

Figure 4. Sample edif.dat with Connections

accomplish this goal. Scripts were used for two reasons. The
first is that the tools being used are still in active
development as a separate project. It would be impossible to
incorporate them into the core of GNU Radio. The second
reason is that these scripts are easily modifiable and can be
run outside of the GNU Radio framework to interface with
the tools. This allows any user or program to take an
‘edif.dat’ file and run through the process of putting a
bitstream on an FPGA. Also if GNU Radio fails, the process
can be picked back up from the scripts without running
everything again.
 The first script is called ‘edif’, which takes one input:
the base MAC address of the FPGA it is building. This calls
EdifWriter on the respective ‘edif.dat’. Once a true EDIF
is created, a checksum is generated with crc32 [17] to
represent the contents of the FPGA. This checksum is stored
on the FPGA so that it can be requested later to determine if
anything has changed. If the FPGA has never been
programmed, then there is no checksum on it and the next
script will be called. If it has been programmed before with
the exact same netlist, in the case where GNU Radio is run
twice with only software changes occurring, then the rest of
the scripts are unnecessary and not run for this FPGA.
 The second script is called ‘qflow’, which actually
builds a bitstream using a rapid modular based assembler
called qFlow. qFlow implements a custom placer that
quickly decides where to place pre-synthesized modules on
any FPGA. It then makes use of Xilinx's router to wire
everything up. This routing is still optimized and thus takes
around two minutes to complete with the shortest paths.
 The same script can be modified to call tFlow, or
Xilinx tools based on what the designer needs. tFlow has a
little bit more information about the organization of the
Virtex 5 family, so it is able to do bit-wise manipulation to
place already routed versions of the modules on the FPGA.
It then does a small amount of routing at the bit level to

Cell;zb_radio;ZB3;Array;output;out;33;Array;
input;in;33;Port;input;rst;Port;input;clk;

Net;rst;blacktop;BT0;rst;-1;zb_radio;ZB3; rst;-
1;

Net;clk;blacktop;BT0;clk;-1;zb_radio;ZB3;
clk;-1;

Cell;blacktop;BT0;Array;input;in0;33;
Array;input;in1;33;Array;output;out0;33;
Array;output;out1;33;Port;input;rst;
Port;input;clk;

Loop;BT_in_00;33;blacktop;BT0;in1;
zb_radio;ZB3;in;

Loop;afpga_zb_radio_ZB_3_wire_0;33;
zb_radio;ZB3;out;blacktop;BT0;out0;

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

91

connect the modules that were placed. This process is fast
for building a working bitstream. It requires that all of the
pieces be compiled to the bitstream level in advance, but all
of the blocks in the current library have been registered with
tFlow to make this possible. The downside to tFlow is that
it requires an intimate knowledge of the FPGA family that is
being worked on.
 GNU Radio is a system that has a quick turn around
time, this means that the hardware needs to compile as
quickly as the software so that prototyping is not hindered.
The commercially available Xilinx tools offer the most
optimized, and often only, way of compiling a hardware
design for their FPGAs. The price for this optimization is a
long build time, which on large systems can take over a day
to complete [18]. By relaxing the placement optimization,
qFlow is able to build a basic radio design in around two
minutes. By removing the routing optimization and utilizing
bitstream manipulation, tFlow is able to build a basic radio
in around twenty seconds. The script could also run the
original Xilinx tools commonly used today to produce an
optimal bitstream at the cost of a long run time. No matter
which process is run, the final output of the ‘qflow’ script is
a bitstream for an FPGA.
 The final script called ‘program’, places the bitstream
that was just built onto the appropriate FPGA. Currently this
is accomplished using a tool called Impact provided by
Xilinx from the command line.
 Once every script has been run, the code moves on to
another FPGA if one exists. All of the scripts are run again
for each FPGA. The final step is sending control data to the
FPGAs to tell them where they should direct data. This
control data, along with the checksum data from earlier, are
sent using raw Ethernet packets. Most commonly the data
are sent back to the host machine but can be directed to
another FPGA or USRP2 or any other system that is
listening on the network. When all of the operations in the
connect_edif() function are completed successfully, it
returns a true value allowing the rest of the program to start
the software blocks. If the program detects errors it will stop
the flow graph and throw a runtime error. The function can
also determine that there are no appropriate FPGA blocks to
run and allow GNU Radio to run normally with only
software blocks.

4. HARDWARE

To facilitate the easy integration of hardware with GNU
Radio, certain steps are taken on the hardware end to
manage communication. By organizing the hardware in a
certain way, the time it takes to assemble is significantly
reduced. The most beneficial modification to the hardware

is the segregation of static and dynamic regions on the
FPGA (Figure 5). There are a few core modules that are
necessary for every design to communicate with GNU
Radio. These make up the static region, which never
changes and thus does not have to be rebuilt every time.
This saves a large amount of time and is similar to the
concept of partial reconfiguration where only a section of
the FPGA is reprogrammed. The difference in this system is
that a whole bitstream is still built and programmed, but it is
done faster with a custom assembler that integrates the static
and dynamic regions.
 Black boxes are used in the Xilinx tool ISE to provide
the ability to separate modules from the static region and
dynamic design. The static region is hard coded and used for
communication interface modules. The top of the dynamic
region is a black box that is named blacktop since as a black
box it appears to be the top of all of the modules being
placed on the FPGA. All of the signal processing modules
are also expressed as EDIF black boxes so that blacktop
only has to see the connections between them. The dynamic
region is what ‘edif.dat’ represents and covers effectively
everything that is not the static region. The outer layer of the
dynamic region is represented by the CELL called
‘blacktop’ with INSTANCE name BT0. Each path is
represented by an in and out ARRAY. The clock is
provided by a PLL in the static region, and the reset is tied
through the static region to a physical button on the FPGA.
 To make this flow more desirable, there is a library of
hardware components in development currently. The
process is constructed so that the community can easily
contribute to the hardware library development. A set of
standards is being used to ensure that all of the blocks can
work properly together on the targeted hardware.

Figure 5. Static with I/O buffers, Ethernet and Dynamic Region

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

92

5. IMPLEMENTATION

The enhancements to GNU Radio allow FPGA blocks to be
“dragged and dropped” into flow graphs and still keep the
ability to perform ‘what-if’ experiments. The rapid iteration
of designs with hardware makes the prototyping of more
complex radios feasible. But in order to build the hardware a
library has to exist.
 Using a library of pre-built and pre-registered hardware
blocks, a radio can be stitched together for an FPGA just
like software designers are used to doing. When this library
has grown into the size that GNU Radio software blocks are
at now, then any designer can pick up the system and
prototype applicable radios. The currently available blocks
are limited to the ones built for demonstrating proofs of
concept. More are being constructed at Virginia Tech to
increase the basic available block library.
 A demonstration of the enhanced GNU Radio is run
within a virtual machine running on a MacBook Pro with a
2.3 GHz Core i7 processor, 8 MB shared level 3 cache, 8
GB of 1333 MHz DDR3 SDRAM, and a 251 GB Apple
SSD. The software is not limited to one specialized
computer configuration -- any computer that can run GNU
Radio can also run GReasy. The MacBook is used here
since it offers portability and easy access to the attached
hardware. The FPGA used is the Virtex 5 on the XUPV5-
LX110T development board, but any FPGA in the
supported families with an Ethernet adapter can be used.
 A ZigBee demonstration was done because it is a
complex standard that can benefit from hardware
acceleration. The ability to add custom hardware blocks to
GReasy lets the designer view what is being placed on the
FPGA and control how it is connected. In Figure 6 the
USRP2 connects to the afpga_in block, which connects to
the ZigBee demodulator, which then connects to the
afpga_out block, which pipes the decoded and demodulated
stream to a file. The USRP2 is set to run at a center
frequency of 2.41 GHz with a decimation of 10 and unity
gain. The USRP2’s constructor sends these settings over
Ethernet and the host computer is set up as the receiver for

data. GReasy needs a USRP2 MAC address in order to
redirect network traffic from the USRP2 to an FPGA
instead. The hardware setup can be seen in Figure 7.
 The afpga_in block is set to run FPGA-0 on eth2,
which means that it will program the first board available
using the second Ethernet interface on the computer. The
‘Blacktop Path’ is set to 0 so that qFlow/tFlow can
connect blocks to the first path in ‘blacktop’, which
produces an output stream to the Ethernet. The only option
for the ZigBee demodulator (afpga_zb_radio) is to set the
instance name. This name is simply a way of identifying
which blocks are which in the final EDIF created by GNU
Radio; it is not necessary to set these names for proper
operation. The afpga_out block is also running on FPGA-0
across the second Ethernet interface. Its output is green in
GRC since it is decoding the data as an integer containing
four characters. In GRC, the software types have to match,
so the file sink is green as well for this example application.
GNU Radio handles the conversion of the data to the proper
type before exposing it to the software blocks.

Figure 6. ZigBee Flow Graph in GRC

Figure 7. ZigBee Hardware Setup

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

93

 The compile times for FPGA hardware in this
prototyped radio have satisfied the “instant gratification”
experience of GNU Radio. The addition of hardware does
not slow down the design process and only enhances the
number of radios that can be successfully implemented.
 Table 1 shows a comparison of the time it takes to build
the ZigBee radio using the Xilinx tool ISE against the
custom tools qFlow and tFlow. For the custom tools,
Synthesis is only required during the first run of a design
that changes the internal logic of a hardware block (which
should not happen often). Unlike the current tools, this also
only forces a synthesis of one block instead of re-
synthesizing the entire design. ISE still runs Synthesis and
Map even when no changes are made to the design logic.
As seen in Table 1, for the average design iteration no
synthesis is performed when using qFlow and tFlow. The
custom tools are only concerned with placing and routing
the specified modules, as long as room remains on the
FPGA. ISE tries to optimize the entire design, so the more
resources used the longer assembly takes. It can also be seen
that tFlow does not have any Bit Generate time. This is
because tFlow works by stitching together pre-built
bitstreams of individual modules. The placing and routing
is already happening at the bit level, so when it is complete
the final product is a working bitstream. Both of the custom
tools used have performed at more than reasonable speeds
and this comparison is meant to show where the
accelerations occur in relation to the tools designed for the
FPGA.

6. CONCLUSION

From the perspective of a radio designer, library-based
assembly is more natural than low-level hardware
description languages and hides the complexity of FPGAs.
In the flow presented here, chains of computation were
specified for FPGA implementation within the GNU Radio
framework just as if they were original radio blocks in the
flow. Once one designer has written standard radios and
filters in hardware, they can be passed around in the form of
blocks, which anyone can drop into their design without the
tedious step of developing for FPGAs. The tools can place
multiple hardware accelerator blocks on one FPGA as long
as there is still available room. The nature of the tools
means that more area resources are required, so the FPGA
will fill up faster, but this is seen as an acceptable trade off
for many designs that see a large decrease in build time.

Implementing multiple accelerator paths on one FPGA will
also begin to cause performance issues in communication
over the Ethernet line if large amounts of data are sent back
to GNU Radio at once. As with any heterogeneous system,
it will perform best in a situation with minimal
communication between hardware; but the gigabit speeds
have been more than adequate for transferring signal data
between the USRP2 and GNU Radio in the past.
 The enhanced GNU Radio flow was demonstrated
using a USRP2 and a Virtex 5 FPGA, all networked to a
host computer with gigabit Ethernet. One clear benefit of
this flow was that the FPGAs could be added or taken away
just like any other module, and were not a forced part of the
design. Any number of FPGAs could be added, and all of
the communication and interconnects would be handled
implicitly. The radio designer could pick the composition of
a radio using available hardware components, and chose
where they go in the flow.
 These enhancements to GNU Radio showed how an
FPGA system could be built in near real-time for an SDR
environment. GNU Radio was used as a test bench for
qFlow and tFlow because of its open nature and current
lack of FPGA integration. As more hardware accelerators
are added to GNU Radio a completely heterogeneous
system could be built even in the prototype phase.

7. REFERENCES

 [1] T. Ulversoy, Software defined radio: Challenges and

opportunities, Communications Surveys Tutorials, IEEE,
12(4):531 –550, quarter 2010.

[2] E. Blossom, GNU Radio, http://gnuradio.org, 2012.
[3] J. Blum, GNU Radio Companion, http://gnuradio.org/

redmine/projects/gnuradio/wiki/GNURadioCompanion, 2012.
[4] A. Alonso, GNU Radio Tutorials, http://gnuradio.org/

redmine/projects/gnuradio/wiki/Tutorials, 2012.
[5] M. Ettus, Ettus research, http://www.ettus.com/, 2012.
[6] E. Blossom, Exploring GNU Radio, http://www.gnu.org/

software/gnuradio/doc/exploring-gnuradio.html#{}fpga,
2004.

[7] J. Corgan, USRP Intro, http://gnuradio.org/redmine/projects/
gnuradio/wiki/UsrpFAQIntro, 2012.

[8] The Comprehensive GNU Radio Archive Network, Available
projects, https: //www.cgran.org/wiki/Projects, 2012.

[9] C. Dick, A case for using FPGAs in SDR PHY, EE Times
Design, http://www.eetimes.com/design/communications-
design/4142853/A-case-for-using-FPGAs-in-SDR-PHY,
2002.

[10] N. Steiner, Tools for open reconfigurable computing,
http://torc-isi.sourceforge.net/index.php, October 2011.

[11] T. Frangieh, Design Assembly Techniques for FPGA Back-
End Acceleration, PhD thesis, Virginia Polytechnic Institute
and State University, In Progress.

[12] G.J. Minden, J.B. Evans, L. Searl, D. DePardo, V.R. Petty, R.
Rajbanshi, T. Newman, Q. Chen, F. Weidling, J. Guffey, D.
Datla, B. Barker, M. Peck, B. Cordill, A.M. Wyglinski, and
A. Agah. KUAR: A flexible software-defined radio
development platform. New Frontiers in Dynamic Spectrum

Table 1. Average ZigBee Build Times in Seconds

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

94

Access Networks, 2007. DySPAN 2007. 2nd IEEE
International Symposium, pages 428 –439, 2007.

[13] H. Harada. Software defined radio prototype toward cognitive
radio communication systems. New Frontiers in Dynamic
Spectrum Access Networks, 2005. DySPAN 2005. First IEEE
International Symposium, pages 539 –547, 2005.

[14] S.M. Mishra, D. Cabric, C. Chang, D. Willkomm, B. van
Schewick, S. Wolisz, and B.W. Brodersen. A real time
cognitive radio testbed for physical and link layer
experiments. New Frontiers in Dynamic Spectrum Access
Networks, 2005. DySPAN 2005. First IEEE International
Symposium, pages 562 –567, 2005.

[15] J. Corgan, USRP FPGA Verilog, http://gnuradio.org/redmine/

projects/gnuradio/wiki/UsrpFAQFpgaVerilog, 2011.
[16] C. Irick, Enhancing GNU Radio for hardware accelerated

radio design. Master’s thesis, Virginia Polytechnic Institute
and State University, 2010.

[17] Ubuntu Manuals, crc32, http://manpages.ubuntu.com/
manpages/lucid/man1/crc32.1.html, 2005.

[18] K. Pereira, Characterization of FPGA-based high
performance computers, Master’s thesis, Virginia Polytechnic
Institute and State University, 2011.

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

95

